The SafetyCube Road Safety Decision Support System

A Quick Guide to Search for Risk Factors & Measures

Co-funded by the Horizon 2020 Framework Programme of the European Union
Introduction

SafetyCube (Safety CaUsation, Benefits and Efficiency) was a European Commission supported Horizon 2020 research project (2015-18) with the objective of developing an innovative road safety Decision Support System (DSS) for a wide range of users – from practitioners to decision makers.

What is the SafetyCube DSS?

The SafetyCube Decision Support System (DSS) is the first global system with knowledge of both road safety risks and measures. It brings together European and international evidence on what causes crashes and injuries on our roads – and what are the interventions that have shown to effectively mitigate these threats. Furthermore, it suggests links between those risk factors and the respective countermeasures.

What is new about it?

Most available systems and repositories so far are compilations of interventions and their impacts on crashes. The DSS, for the first time in the history of road safety work,

- holds comprehensive and interlinked information both on crash risks and measures so that users are directed from problems to solutions on a user-friendly graphical interface
- locates both risks and measures in complex taxonomies, mapping the whole road safety domain, across the fields of human behaviour, infrastructure, vehicles, post impact care, and – with a special focus – the issue of serious injuries
- makes sure that users with various backgrounds can benefit from the vast knowledge contained in the system by casting scientific evidence on every risk and every measure (or groups thereof) into comprehensive synopses, i.e. text documents with:
 - **Summary**, including colour code (ranking the riskiness of a problem or the effectiveness of a measure), abstract, and review of the scientific evidence
 - **Scientific overview**: a detailed description of study results
 - **Supporting document**: literature search & list of relevant studies
- provides summaries & links of all available studies on dedicated results pages

Where is the evidence from?

The SafetyCube partners have been querying all commonly available scientific literature databases such as Scopus, TRID, Google Scholar, Science Direct, Taylor & Francis Online, and Springer Link. In addition, national literature and evidence from In-depth crash databases such as GIDAS have been exploited.
Step 1: How to dispatch a query? The Search Page

You can find the SafetyCube DSS at the following link: https://www.roadsafety-dss.eu

The SafetyCube DSS provides you with **five** alternative options for a tailor-made access to the vast amount of knowledge - we call them **entry points**:

- **Keyword search**: search for your topic by entering a keyword (free text)
- **Risk factors**: search for a crash risk factor through the SafetyCube taxonomy
- **Measures**: search for a road safety intervention through the SafetyCube taxonomy
- **Road user groups**: search for crash risk factors or interventions for a specific road user group
- **Accident scenarios**: search for crash risk factors or interventions for a specific accident scenario

![Figure 1: The Query Page](image)

Upon selecting one of the entry points, the system will provide you with different options to specify your query. Figure 2 gives an overview on the different screens the system will bring forward – depending on your choice – together with examples of further results from the system (Results Pages, Synopses, Individual Study Pages).
Figure 2: Overview of the DSS’s query / search pages, Results Pages, Synopses, and Individual Study Pages.
OPTION 1: KEYWORD SEARCH

Upon selecting “Keyword Search” the system lets you type in a keyword in free text and – as you type – will show you all potential matches in the database (see left part of Figure 3). Once a keyword is entered (or selected from the dynamic pop-up list), the system will respond with adequate subsets of risk and measure taxonomies for further selection (see right part of Figure 3). Selecting one of the two taxonomies’ entries (risk factors or measures) will take you further to the respective results page (see next main chapter on Results Page hereunder).

OPTIONS 2 AND 3: QUERYING RISK FACTORS AND MEASURES

When “Risk Factors” is selected as entry point, the SafetyCube taxonomy of crash risks will open, sorted by the domains “Behaviour”, “Infrastructure” and “Vehicle” (see Figure 4). Likewise, if the entry point “Road Safety Measures” were selected, the SafetyCube taxonomy of measures would appear (see Figure 5).

Figure 3: Left: An example for Keyword Search. Already as the word “pedestrians” was only partly typed in (“pedes”), the system suggested various potential matches in the database; “PEDESTRIANS” was then selected from the list of suggestions. Right: adequate subsets of risk and measure taxonomies for further selection

Figure 4: Risk Factors Search example: the SafetyCube taxonomy of crash risks on the DSS, with the three available pillars of “Behaviour”, “Infrastructure” and “Vehicle”.

Figure 5: Measures Search example: the SafetyCube taxonomy of road safety measures on the DSS, with the previous three pillars plus "Post Impact Care".

Selecting one of the taxonomy’s entries will take you further to the respective results page (see next main chapter on Results Pages hereunder).

OPTION 4: QUERYING ROAD USER GROUPS

If you want to inquire about crash risks or countermeasures specifically related to a road user group, you may want to enter via the road user groups query (see Figure 6). As for keyword search (above), the system will respond with adequate subsets of risk and measure taxonomies – in relation to that road user group – for further selection. Selecting one of the two taxonomies’ entries will take you further to the respective results page (see next main chapter on Results Pages hereunder).

Figure 6: Road User Group Search example: By choosing ‘pedestrian’ from the list, the system responds with SafetyCube taxonomies on risk factors & measures specific to pedestrians.
OPTION 5: SEARCHING FOR ACCIDENT CATEGORIES

The final search option consists of searching for Accident Categories, as shown in Figure 7. This is somewhat similar to the previous option, in that it constitutes a shortcut for crash risks or road safety measures pertinent to a specific accident category. The system will then respond with adequate subsets of risk and measure taxonomies – in relation to that accident category – for further selection. Selecting one of the two taxonomies’ entries will take the user further to the respective results page.

Figure 7: Road User Group Search example: By choosing ‘pedestrian’ from the list, the system responds with SafetyCube taxonomies on risk factors & measures specific to pedestrians.

Step 3: The Results Page

Upon selecting an entry on one of the above lists (risk factors or measures), the main results page will appear (see example for risk factor “Work zones” hereunder, Figure 8). The results consist of

- Short introductory texts and the colour code(s) from the analyses of one or more available SafetyCube synopses, describing the risks or the effectiveness of measures
- Links to one or more available SafetyCube synopses on the issue (pdf link button(s) next to the colour code)

1 The following examples were extracted from the DSS in March 2018. When you query the system yourself, results may have different appearance and/or content, as the DSS constantly develops further, new studies are being added and improvements following the SafetyCube quality assurance processes are implemented.
• A table listing the available meta-analyses and other coded studies in the SafetyCube database together with their main characteristics such as title and source, design, country, and year of publication.

• Selecting a study from the table will lead the user to the individual study page.

• Depending on the selected domain, adaptive search filters are available on the left side of the results page. Filters include: keyword, specific risk factor (corresponding to the most detailed taxonomy level), road user group, road type, country. The keyword filter appears only when entering from the “keyword” or “road user group” entry point, and allows the user to “un-filter” the results and obtain all the studies related to the risk factor or measure (and not only those related to the keyword or road user group).

• A button which links to related measures (if the results page is in the risks domain) or to related risk factors (if the results page is in the measures domain).

![SafetyCube DSS European Road Safety Decision Support System](image)

Figure 8: The Results Page of risk factor “work zones”
RELATED RISK FACTORS / MEASURES

With regards to the related risk factors / measures function, considerable and systematic effort has been made for the appropriate linking of risk factors and road safety measures. This feature is important to assist DSS users in:

(a) learning which risks can be remedied by which types of measures and
(b) learning which types of risks will be reduced by a particular measure.

The “related risk factors / measures” button is activated only once a “Specific Risk Factor” or a “Specific Measure” is selected from the adaptive search filters on the Results Page on the left. Selecting one related risk factor / measure from the list will cause a table listing the available synopses and studies in the SafetyCube database for the related risk factor / measure to appear. Adaptive search filters are also available on the left side. Then, selecting an entry of the table will lead the user to the individual study page (see next main chapter on Individual Study Page).

An example is presented in Figure 9. Initially, "Distraction and inattention" was selected as a general risk factor topic. Then "Distraction within vehicle or within the riding or walking situation" was selected as a specific risk factor. When using the “related risk factors / measures” button, the system provides several related measures from the SafetyCube taxonomies. The results for each measure appear after selecting it; in the example "Installation of median" was selected.

Figure 9: Example of the Related Risk Factors / Measures Function
SYNOPSES

Within SafetyCube, many synopses were developed for risk factors and road safety measures. Synopses are targeted at a wide range of users with various backgrounds and professions and provide comprehensive analyses of scientific evidence of the examined topics.

The synopses are pdf documents (size between 10 and 70 pages), available for free download from the DSS Results Page of each topic (pdf icon next to the risk factor or measure title). Every synopsis contains three sections, each with a specific purpose and function:

1. **Summary**: a two-page overview, including colour code (ranking the magnitude of a risk or the effectiveness of a measure), abstract, and overview of the scientific evidence.
2. **Scientific overview**: a five-page document, with detailed background information and description of study results, and relevant analyses, either quantitative (meta-analyses or vote-count analyses) or qualitative (review-type analyses).
3. **Supporting document**: with no page limit, including a full record of the literature search and study selection criteria, the full list of relevant studies, as well as detailed comparative tables of study designs and results (if applicable).

An example Synopsis Page for the risk factor of "work zones" is provided in Figure 10.

![Figure 10: Indicative screenshot of the Synopsis file of risk factor "Presence of work zones - Work zone duration"](https://example.com/figure10.png)
It is noted that not all synopses include information for all road user groups, and therefore some will not appear when entering from the “keyword” or “road user group” entry point. On the other hand, some synopses include separate information for different road user groups, and / or a different colour code for different road user groups, if applicable. All the synopses produced are also listed and available for download via the Knowledge tab of the SafetyCube DSS.

Step 4: The Individual Study Page

Upon selecting one of the studies in the above Results Page, the Individual Study Page opens, providing information on

- the study abstract (as it appears in the original publication),
- the related URL,
- a table of all risk / measure safety effects available in the study containing:
 - test and reference conditions (e.g. helmet vs. not helmet)
 - types of outcome (e.g. injury severity)
 - types of estimate (e.g. CMF, odds ratio)
 - statistical significance indicators where applicable
- summary
- description of potential methodological issues or biases

The summary provides an outline of the main study features and findings as noted by the SafetyCube expert who analysed and coded the study. The same experts noted potential methodological issues or biases, in studies where they were observed. An indicative study page of a coded study for the risk factor of traffic flow is shown in Figure 11; only the first effect rows are visible due to space constraints.
Estimating the relationship between accident frequency and homogeneous and inhomogeneous traffic flows.

Harelus, I.

Abstract

This paper estimates the relationship between accident frequency and the traffic flow empirically treating the hourly traffic flow in two different ways, as consisting of homogeneous vehicles and as consisting of cars and lorries. Rural roads in Sweden are studied using Poisson and Negative Binomial regression models. It is found that important information is lost if no consideration is taken to differences between vehicle types when estimating the marginal effect of the traffic flow. The accident rate increases when the traffic flow is treated as if homogeneous. However, when cars are studied separately the result suggests that the accident rate is constant or increases. The result with respect to lorries is reversed, indicating a decreasing number of accidents as the number of lorries increases.

https://doi.org/10.1016/j.aap.2003.11.002

Summary

Data from 83 rural road sections in Sweden from 1989 to the middle of 1995 is analyzed. The traffic data is hourly based traffic flow (for each direction, but not per lane), separately for cars and lorries. Injury accidents, excluding intersection accidents and accidents involving animals, are analyzed, and daylight accidents are studied separately (showing the same results as all accidents, this analysis has not been coded). For the four road types, approximately 160,000 accidents are in the dataset. In the Poisson regression analysis, hours with similar traffic flows are aggregated. A negative binomial model was also used, but distributional assumptions do not seem to affect the results, and Poisson results are presented and coded. Generally, an increasing amount of lorries is found to be associated with lower accident frequency (controlling for car volume), while the opposite is found for volumes of cars. This tendency is found both for all accidents, single-vehicle accidents, and multi-vehicle accidents. The study analyzes four types of roads separately, and finds larger effects for motorways and roads with speed limits 70 km/h and road width 6-7.7 m, than for other road types (speed limit 90 km/h and road width 6.79 m; road type with speed limit 40 or 110 km/h and road width 8.1 m without separated road lanes). The author notes that a small sample size, and low volumes of lorries relative to cars may be an issue.

Limitations

Extent	Motivation	Type
MAYBE A PROBLEM | AS NOTED BY AUTHOR LOW ACCIDENT FREQUENCY PER UNIT OF TRAFFIC FLOW INDICATES LOW POWER. THE AUTHOR ALSO NOTES THAT THE FLOW OF LORRIES IS A FRACTION OF THE FLOW OF CARS. | GENERAL: SMALL SAMPLE

Basic Study Information

Topic: RISK FACTOR
Source: ACCIDENT ANALYSIS AND PREVENTION, 35, 985-992.
Design: OBSERVATIONAL CROSS-SECTIONAL.
Countries: SWEDEN
Keywords: TRAFFIC: STATISTICS & NUMERICAL DATA FORECASTING MODELS RURAL POPULATION HUMANS REGRESSION ANALYSIS SWEDEN TRAFFIC TRAFFIC PREVENTION & CONTROL: BINOMIAL DISTRIBUTION ACCIDENTS THEORETICAL

Effects

<table>
<thead>
<tr>
<th>Effect No</th>
<th>Outcome</th>
<th>Exposure</th>
<th>Group Type</th>
<th>Effect Estimator</th>
<th>Effect Estimator Specifications</th>
<th>Sample</th>
<th>Estimate Lower Limit</th>
<th>Estimate Upper Limit</th>
<th>Conclusion Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACCIDENT</td>
<td>SLOPE</td>
<td>POISSON REGRESSION, HG, RURAL ROAD LIMIT 70</td>
<td>-2.66</td>
<td>SIGNIFICANT POSITIVE EFFECT ON ROAD SAFETY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ACCIDENT</td>
<td>SLOPE</td>
<td>POISSON REGRESSION, CARS, RURAL ROAD LIMIT 70</td>
<td>3.62</td>
<td>SIGNIFICANT NEGATIVE EFFECT ON ROAD SAFETY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ACCIDENT</td>
<td>SLOPE</td>
<td>POISSON REGRESSION, HG, RURAL ROAD LIMIT 90</td>
<td>-0.94</td>
<td>SIGNIFICANT POSITIVE EFFECT ON ROAD SAFETY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ACCIDENT</td>
<td>SLOPE</td>
<td>POISSON REGRESSION, CARS, RURAL ROAD LIMIT 90</td>
<td>1.43</td>
<td>SIGNIFICANT NEGATIVE EFFECT ON ROAD SAFETY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ACCIDENT</td>
<td>SLOPE</td>
<td>POISSON REGRESSION, HG, RURAL ROAD LIMIT 90,110</td>
<td>-0.77</td>
<td>SIGNIFICANT POSITIVE EFFECT ON ROAD SAFETY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>